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SUMMARY 

The axial diffusion of a passive scalar field (e.g. temperature) in Poiseuille flow through a duct is considered, 
taking account of leakage of heat through the duct boundary. The cases of the two-dimensional channel 
and the pipe of circular cross-section are considered in detail, and it is shown that (i) the centroid of the 
scalar field moves (asymptotically) with a velocity intermediate between the mean and the maximum flow 
rates and increases with increasing wall conductance, and (ii) the effective diffusivity in the flow direction 
is a decreasing function of wall conductance. 

The temperature field downstream of a maintained heat source is determined as a function of wall con- 
ductance. 

1. Introduction 

The problem of the axial diffusion of a scalar field (e.g. dye concentration or heat) in pipe 
flow was first considered by Taylor [1] and has been reconsidered from various points of  
view by a number of  subsequent authors (Aris [2], Erdogan and Chatwin [3], Chatwin [4, 
5, 6] ,  Dewey and Sullivan [7], Lighthill [8], Smith [9], Sandarasubramanian and Gill [10]). 
The effective axial diffusion results from a combination of distortion of the scalar field by 
the mean axial flow (Poiseuille flow in the steady laminar situation) and molecular diffusion, 
predominantly in the radial direction. When these processes have had a long time to act after 
the initial release of dye or heat, an asymptotic state is attained in which the centroid of the 
scalar distribution moves with the mean fluid velocity, and the distribution of the cross-sec- 
tional mean about the position of the centroid tends to a Gaussian form controlled by a simple 
diffusion equation. 

In the various treatments cited above, it is assumed that there is zero flux of the scalar 
field across the pipe boundary, i.e. (in thermal terminology) it is an insulator. This assumption 
is certainly justified in the case of  dye that cannot penetrate the boundary, but in the case of 
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heat there is always some leakage through the pipe wall (depending on its thermal conduc- 
tance), and indeed, if the pipe is metallic, a perfect conductivity condition (rather than an 

insulating condition) may be appropriate. In many potential applications (e.g. in the problem 
of heat transport through the cooling circuits of nuclear reactors or, more generally, in any 
heat exchanger circuit) transfer of  heat through the boundary is an essential ingredient of 
the problem, and will obviously have an important effect either on the decay of temperature 
in a 'blob' of  heat carried through the system, or on the steady temperature distribution estab- 
lished downstream from a maintained source. 

In this paper, we consider the influence of finite wall conductance. (We shall use the thermal 
terminology, although the results may be applicable for other scalar fields as well.) We shall 
find that, for the convected 'blob' problem, there are three main effects. First, the total heat 
content, integrated throughout the fluid, is obviously no longer a conserved quantity, since 
leakage to the walls is now possible. Secondly, the centroid of the temperature distribution 
in the fluid no longer moves with the mean fluid velocity Uo, but with a velocity [.,re inter- 
mediate between the mean and the maximum, the precise value depending on the wall con- 
ductance and the duct cross-section. Thirdly, the effective axial diffusivity De in the asymptotic 
state is less than that for an insulating boundary (Do) by a factor which again depends on 
wall conductance and duct geometry. In the extreme case of  a two-dimensional channel with 
perfectly conducting walls, Ue = 1.3 Uo and De = 0.14 Do. 

These last two effects may both be understood in physical terms as follows: as a patch of 
hot fluid is distorted by the flow, it is the slower moving parts of  the distribution that prefer- 
entially diffuse to the wall; the slow tail of the distribution is thus continuously eroded, and 
so the centroid tends to move faster and the net spreads relative to the centroid tends to be 
less. 

After this paper had been prepared reference [ 10] came to our notice. Sankarasubramanian 
and Gill describe the results concerning the centroid and effective diffusivity. The present 
paper goes rather further than reference [10], inasmuch as it describes the effects of duct 
geometry on diffusion and extends the work to a study of a temperature field downstream 
of a maintained heat source. Our approach is simpler, physically more illuminating and may 
help to achieve a better understanding of the solutions described in [10]. We feel, therefore, 
that our paper justifies independent publication. 

2. Heat dif fus ion in a duct  of arbitrary cross-section 

Suppose that fluid flows steadily with velocity (U(y, z), 0, 0) along a duct whose interior 
is the domain -~ in the y - z  plane. We consider a temperature field 0 (x, t) in the fluid which 
is distorted by the flow and subject to molecular diffusivity K ; the equation for the evolution 
of 0 (x, t) is then 

~0 ~0 - -+U(y , z )  = K V  2 Ot ~ x  0 in ~ . (2 .1)  

We suppose further that the thermal boundary condition on the boundary a _~ is that appro- 
priate to a conducting wall with conductance 7, i.e. 
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30 
3n + "/0 = 0 on 3.&, (2.2) 

where, of  course, 3' > 0. 
The method adopted by Taylor [ 1 ] was in effect to consider the evolution of  the cross- 

sectional average 0 (x, t). The approach works when 7 = 0 essentially because this cross-sec- 

tional average automatically satisfies the boundary condition (2.2), viz. 30/3n = 0 on 3_~. 
When 7 ¢ 0, the cross-sectional average does not satisfy (2.2), and this leads to difficulties in 
the detailed application of  Taylor 's method. The more formal approach described in this 
section appears to be required. The techniques used here, are related to those that have been 
employed in papers on associated topics. See, for example, Carrier [11],  Philip [12] and 
Chatwin [13]. Taylor 's results (in the case of  the pipe of  circular cross-section) are of  course 
recovered when 3' = 0. It may be noted that the methods of  this section may be adapted to 
deal with a turbulent diffusivity K(y, z) or with the effect o f  secondary flow if this is present. 

It will be convenient to use dimensionless variables. Let b be a length characteristic of  the 
duct cross-section, and let 

(~,~7,~) = (x,y,z)/b, r = tK/b 2. (2.3) 

Let Urn be the maximum value of  IU(y,z)[ in .~  and let u(~, ~')= U(y,z)/Um. Then (2.1) 
becomes 

30 30 
+ Pu(~, ~') ~-~ = V20 in _~ . (2.4) 

where now V = = 32/3~ = + 32/3r72 + a2 /a f  2 and P = Umb/g (the Peclet number). In most 
situations of  interest, P >> 1;we shall assume that P />  O(1) in the following treatment.  

In terms of  the Fourier transform of  0, defined by 

0(~, rt, ~', r)  = f +__?-O(k, 7, ~, r)e 'k~ dk, (2.5) 

(2.4) becomes 

aO 
3--7 + iKu(~, ~)0 = ( V 2 - -k2)O,  (2.6) 

where K = Pk, and (2.2) becomes 

aa--L~ + 3,0 = o. (2.7) 
an 
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We may seek solutions of the form 

0 = F(K, 77, ~) e-p(K)r, 

where 

- -pF+iKuF = (V 2 - -k2)F 

and 

in _~ ,  

(2.8) 

(2.9) 

(2.16) 

0 ~ AoFo(K, 77, ~) e-p°tK)r, 

and so, from (2.5), 

0 ~f_+AoFo(K, ra,~)e-'o'K)%ik~dk. 

(2.15) 

a F  
- - + T F  = 0 on a-~.  (2.10) 
an 

This constitutes an eigenvalue problem for determination of the possible values p,, of p and 
the corresponding eigenfunctions Fn (n = O, 1, 2 . . . .  ). 

Standard manipulation of (2.9) and (2.10) provides the result 

(p -k : )  f W, dS = f ,VSl=dS +,  ,F,=dS + iK f  tF,=dS. (2.11) 

Note in particular that Re p > k 2, and 

(Imp) f IFI2dS = K f  u IFI2dS. (2.12) 

The eigenvalues may clearly be ordered so that 

k s < Repo ~< Repl ~ Rep2 ~< . . . .  (2.13) 

The general solution of the problem (2.6), (2.7), has the form 

0 = ~ AnFn(K, 77, ~') e-pnCK)r, (2.14) 
n 

where the F,,'s may be supposed suitably normalized and the An's are then determined by 
conditions at r = 0. Provided Ao v ~ 0 and Repo < Repx, the solution for sufficiently large 
r then has the form 
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This form of solution leads immediately to evaluation of the effective convection velocity 

Ue and the effective diffusivity De. For it is evident that i fpo (K)  can be expressed as a power 

series in iK, i.e. 

Po = Poo + iKpo~ + (iK)2Po2 + . . . .  (2.17) 

then 0, as given by (2.16), satisfies a differential equation of the form 

~0 _ b0 a 20 (2 .18)  ~)r PooO--PPol -~--p2po2 a~--~ - - . . . ,  

and so (returning to dimensional variables) 

Ue = polUm, De = --po2Um2b2/r. (2.19) 

(It turns out that Po2 is invariably negative). The leading coefficient Poo is the decay rate due 
to transfer of heat to the boundary. 

We are therefore led to seek expansions for Fo(K, ~7, ~) and po(K) in the form 

Fo(K,~,~) = ~ (iK)raFomOT,~),Po(K)= ~ (iK)mpom; (2.20) 
m = 0  m = 0  

substituting in (2.9) and equating successive powers of K to zero, we obtain 

(V 2 + P o o ) F o o  = 0, (2.21)  

(V 2 +Poo)Fol  = (u--pol)Foo, (2.22) 

(V 2 + Poo)F~ = -- (Po2 + P-2)Foo + (u --Pol)Fol, (2.23) 

etc., 

and we have also the boundary conditions 

( ~ n + ~ / )  Fore = 0  on a-& ( m = 0 ,  1,2 . . . .  ). (2.24) 

Let us suppose for the moment that the problem for Foo and Poo is solved. We may suppose 

that F0o is normalized so that 

f lFoolZdS = 1. (2.25) 

From (2.21) and (2.24) we then have 
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Poo = f lVFool 2dS +3' falVFoo[ 2dS = q2, say (2.26) 

where q is real. 
Equation (2.22) together with the boundary condition (2.24) (with m = 1) is soluble for 

Foa only if a solvability condition is satisfied. Multiplying equation (2.22) by/7*0 and inte- 
grating over-&, we have 

Pol = f ulFool2dS. (2.27) 

It is evident from this that Pol is real, as anticipated by the notation of (2.18) above. Similarly, 
(2.23) together with the boundary condition on Fo2 is soluble only if a similar solvability 
condition is satisfied: multiplying (2.23) by/70*0 and integrating over.&, we have 

(po~ +/,-2) = f (u--pol)FolFgodS, 

and using (2.22), this may be written 

po2 +p-Z = Poof lFoll2dS--f lVFo, 12dS--T f IFo, 12dS = --M(7),say. 
J J Ja -& 

(2.28) 

(2.29) 

In terms of this function, (2.19b) becomes 

De = K + U°2b2M(3,) (2.30) 
K 

Equation (2.30) is similar to that obtained by Taylor [1] with the refinement of Aris [2] for pipe 
flow. 

The case 3' = 0 is particularly simple, because then 

Foo = constant = A -u2, (2.31) 

where A is the area of the cross-section, and Po0 = 0. Hence from (2.27), 

= A - I f  udS = u, (2.32) 

where the overbar represents an average over the cross-section. Hence, from (2.19), the 
effective convection velocity in this case is 

Ue = U0ff (2.33) 



as obtained by Taylor [1]. Moreover M(7) is given in this case (from (2.29)) by 

M(7) = f IVFol i2dS. 
d 
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(2.34) 

3. Two-dimensional channel 

Let .~  be the domain Ir/I < 1 and suppose that the flow is steady, laminar, and fully developed, 
so that 

u = l - - r / 2 .  (3.1) 

The problem for Foo, Poo, is trivial. We find that Poo = q2 is the smallest non-negative root 
(0 ~< q ~< zr/2) of  the equation 

q tan q = 7, (3.2) 

and then Foo(r/), norrnalised to satisfy (2.25), is given by 

F0o(O) = ( I + 2q] 2q ] cos qr/. (3.3) 

Note that for an insulating boundary (7 = 0) we have q = 0 and Foo01) = 2 -1/2 , while for a 
perfectly conducting boundary (7 ~ o~), q = rr/2 and Foo(r/) = cos (rtr//2). For all intermediate 
values of  q, we have Foo(r/) > 0, for all ~7, ir~l < 1. 

From (2.27), Pol is now given by 

f_~l  ( sin 2q]  -1 8q a - - 6 q c + 3 s  
Pol = ( 1 - - r / 2 ) c o s 2 q r /  1 +  2q ] dr/ = 6 q 2 ( 2 q + s  ) , (3.4) 

where we use the abbreviation 

c = cos 2q, s = s in2q.  

Together with (3.2), this defines Pol as a function of  the wall conductance 7. Note that 

2 2 + 2  
Pol (0) = ~-, Pol (oo) = ~- ~ -  = 0.8693. (3.5) 

The ratio of  the corresponding convection speeds, from (2.19), is 
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(Ue)7=- = 1+  3 
(Ue)v=o ~ = 1.304. (3.6) 

As anticipated in the introduction, the effective convection speed is greater when the walls 
are conducting than when they are insulating. 

The function Fox (r/) may now be obtained by integrating (2.22) subject to the symmetry 
condition 

Fgx(0) = 0. (3.7) 

The result is 

2q ] Fol(r/) = 4q2COSqr/+ g(q)~7---~q sinqrT+BFoo07) (3.8) 

where B is an undetermined constant, and 

2q 2 + 3 c + 3 q s + 3  

g(q) = 6q2(2q + s) 
(3.9) 

By virtue of (3.4), it may be verified that the function (3.8) automatically satisfies the con- 
ditions 

dFo~ 
- -  + 7 F o l  = 0 on rt = + 1.  ( 3 . 1 0 )  

dr/ 

Finally, Po: may be obtained from (2.28); note that, by virtue of (2.27), the term involving 
the constant B in (3.8) makes zero contribution to the integral. We obtain the following result 

( )-' 
= + s_s_ [ J (1- -P01)  2 + K ( 1 - - P o l ) + L ]  = --M(7), P02 + p-2  1 2q (3.11) 

where 

j = ~q-2 s_~q - l c ,  

K = ~._q-2 + ( ~ q - S _ ~ q - a ) s + ( _ ½ q - 4  + ~ q - 2 ) c  ' 

L = ~ q-2 + ( ~ q - a _ ~ q - S  + ~ q - 7 ) s + ( _ i l  ~ q-2 + ~ q - a _ ~ q - 6 ) c "  
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The extreme cases of  insulating and perfectly conducting boundaries are again of  particular 

interest. The former case may be obtained from consideration of  the limit q -+ 0 in (3.9) 
and (3.11). It is however simpler to solve the problem with q = 0 from the outset. This 

procedure gives 

and 

F o o  = 2 - I n ,  F01 = 2 - 1 n ( ~  772 --1~ 7/4 + B ) ,  (3.12) 

P o o  = O, Pox = ~, M(O) = ~ = 0.00847. (3.13) 

In the case of  perfectly conducting boundaries (7 ~ ~ ,  q = 7r/2), (3.9) and (3.11) yield 

M ( ~ )  = ~s ~/.-6 [751r 2 _~r  4 - - 630 ]  = 0.00118. (3.14) 

The ratio 

M ( ~ )  _ 0.140 (3.15) 
M(O) 

gives a measure of  the reduction in effective diffusivity in replacing insulating boundaries by 

perfect conductors. 

4. Pipe of  circular cross-section 

Suppose now t h a t . ~  is the domain r 2 = 7 2 + ~-2 < 1, and that the flow is again steady, laminar 

and fully developed, so that 

u = 1 - - r  2. (4.1) 

The problem for Foo, Poo is again trivial. From (2.21) and (2.24), together with the condition 
of  finiteness at r = 0, we have 

Foo(r)  = CJo(qr) ,  Poo = q2, (4.2) 

where q is the smallest non-negative root o f  the equation 

q J o ( q )  q J , ( q )  
- -  - -  ( 4 . 3 )  

~l --  J o ( q )  J o ( q )  ' 

and C is given by (2.25), i.e. 

{fo' } C = Jo 2 (qr) 2 ~rrdr - 1/2 (4.4) 
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When 7 = 0, qJl(q)= 0, and the relevant root is again q = 0. When 7 = ~ ,  Jo(q)= 0, the 

smallest root  being q = 2.405. As 7 increases from 0 to o% the smallest positive root  of  (4.3) 

increases monotonical ly  from 0 to 2.405, and 0 < F0o(r)  < C for 0 ~< r < 1. 

From (2.27), Pol is given by  

fo 1 f0' Pol = (1 --r2)Jo2(qr)rdr Jo2(qr)rdr. (4.5) 

Note in particular the extreme values ofp0~ = 0.5 when 7 = 0, Pol = 0.78 when 7 = ~". The 

value for 7 = 0 is then as obtained by  Taylor [1] ,  while for 7 = ~ (4.5) gives the result 

obtained by  the authors [10].  The effective convection velocity is therefore a factor ~ 1.6 

greater when the pipe is a perfect conductor  than when it is an insulator. 

The function Fol (r) satisfies 

1 d dFol 
- - - - r  + q 2 F o l  = C ( 1 - - r  2 --Pol)Jo(qr) (4.6) r dr dr 

and we require the solution that is finite at r = 0; by virtue of  (4.5), this solution then auto- 

matically satisfies the condit ion 

(~r +7 Fol)= 0 on r = 1. (4.7) 

The required solution is 

Fol(r) = [Jo(qr')Yo(qr)--Jo(qr)Y(qr')] C(1 - - r  '2 --Pol)Jo(qr') r'dr'. 
0 

(4.8) 

The function M ( 7 ) = - - ( P o 2  + p - 2 )  may  now be computed  from (2.29). It is found that 
M(7  ) decreases monotonical ly  from 0.0052 to 0.00124 as 7 increases from 0 to ~ .  The value 

for 7 = 0 is then as obtained by  Taylor [1] and Aris [8].  

In this case 

M(--) 
- 0.25, (4.9) 

M(O) 

a result that may be compared with the two-dimensional result (3.15). The variation of  Poo, 

Pol and Po2 + p - 2  as functions of  3' for pipe flow are shown by the dot ted  curves in Figure 1. 
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Figure 1. Variation ofpoo,po~ andpo~ + P- ~ as functions of % 

- -  Two-dimensional channel; 
. . . .  Pipe of circular cross-section. 

5. The behaviour of higher harmonics 

I f  w e  write the Fourier inverse of(2.14) in the form 

0(~,n, Lr) = ~ o.(~,n,L~), (5.U 
11=0 

then the analysis o f  Section 2 has shown that the leading term satisfies the modified diffusion 

equation 

300 3~0° + (5.2) 300 +PPoi = --PooOo --P~Po2 3~---'T" . . . .  
a r  b~ 
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(with Po2 < 0). Moreover, the structure of  this leading term is determined by the function 
Foo(r~, ~'); in fact as r ~ oo 

e - P o  o r 
Oo(~, r~, ~', r)  "~ AoFoo(rh ~) ( _ p 2 p o  2 7-) 1/2 exp 

- -  (~  - - P P o l  7") 2 

( - -  4p2po2 r) ' 
(5.3) 

is a Gaussian function centred on ~ = PPol r. 
A similar analysis may be applied to the terms On for n />  1. The functions Fn(K, 7?, ~'), 

Pn(K), determined by the eigenvalue problem (2.9), (2.10) may be expanded (cf. (2.20)) 
in the form 

Fn(K, rh~) = ~ (iK)mFnrn(rh~), Pn(K) = Z (iK)mpnm, (5.4) 
r a = O  / 'n=O 

and Pnm, Fnm 07, ~) may then be determined by  perturbation procedure. It is evident that 
this will lead to an effective velocity U) n) = P n l  Uo and an effective diffusivity De(n) = -  
Pn2 U2 b2/g(Pn2 < 0) for each harmonic n = 1, 2, 3 . . . .  , and that for r ~ 0% (cf. (5.3)), 

e-PnO T 

On(G, ~7, ~, r) ~ AnFno (7, ~) (_p2pn  2 r)1/2 exp 
-- (~ --PPnl T) 2 

(-- 4P2Pno r) 
(5.5) 

The fact that the different ingredients On move with different effective velocities Pnl Uo 
suggests that there may be a detectable separation of  the ingredients as r -~  oo. However, of  

the structure functions Fno07, ~), only Foo0?, ~') is positive over the whole cross-section 
.&, and it is clear, on physical grounds, that if 0 (x, 0)/> 0 for all x, then 0 (x, t) ~> 0 for all 
x and all t > 0. It follows that the leading term of  (5.1) must in fact dominate the series for 
all ~, despite the differences in effective convection velocities of  the different ingredients. 

This consequence of  the positivity of  0 has interesting implications concerning the relative 

magnitude of  the constants Pnm. Suppose we move with the convection velocity o f0n  (n/> 1), 

i.e. ~ =PPnz r ;  then 

On cc r -z/2 e-pno r (5.6) 

and 

Oo o: r -1/2 e-Poo r exp --(Phi - -Po l )  2 r (5.7) 
-- 4po2 

and the requirement that 0o dominate over On for all r implies that 

(Pnl -- P01 ) 2 
Pno t> Poo (n = 1 , 2 , 3  . . . .  ). (5.8) 

4po2 
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Under this condition, the 0n-ingredient has a natural decay rate Pno which more than com- 
pensates for the fact that it finds itself further and further out in the tail of  the 0o-Gaussian 
distribution. 

The inequality (5.8) is well illustrated by the simplest case of  a two-dimensional channel. 
For the first harmonic 

sin 2ql-a/2 
F, o01) = 1 ~q  ] sin q0 (5.9) 

Note that for an insulating boundary (7 = 0) we have q = rr/2, Plo (0) = 7r 2/4 = 2.4674, 
Flo (r/) = sin 0rr//2), while for a perfectly conducting boundary (3' -~ oo), q = rr, Flo (r/) = 
sin rrr/, and Plo (oo) = 7r 2 " 

From (2.27), P n  is now given by 

P n  = 111 s in2q. | -~j  1 \ r~  ( 1 - - r / 2 ) s i n  2qrldr l  = 8 q a - - 3 S + 6 q C  (5.10) 
2q ] 1 6 q 2 ( 2 q - - S )  ' \ 

where C = cos 2q and S = sin 2q. Note that 

2 2 2 1 
P n ( 0 )  = 3 lr 2 - 0.4640, Pn(°° )  = ~-q-2 f f  2 - -  0.7173. (5.11) 

P12 + P - z  is now given by 

P12 + p - 2  = (1 - -~  S q - ' ) - x  {(1 --Pll)2R + ( 1  - - P , , ) T +  W} = M1(3'), (5.12) 

where 

R = ~Cq - 2 - ~ S q  -3, 

T =  ~ q - 2 + [ ~ q - a _ ~ q - S ] S  + [ ] q - 4 _ ~ q - = ] C  ' 

W = , ~ t r q - 2 + [ - - ~ q - a + ~ q - S - - ~ q - 7 ] S  

+ [ ~  q - 2 _ ~ q - 4  + ~ q - 6 ] C "  

(5.13) 

The extreme cases of  insulating and perfectly conducting boundaries are again of  particular 
interest. When 7 = 0 ,M(0)  = -- 0.003355 and when 3' = oo, M(oo) = -- 0.001116. 

From Section 3, P00 = 0, P m =  ] ,  P02 = -- 0.00847. Hence, 

( P n  - P o l  )2 
Poo 4Po2 = 0.21235 (5.14) 
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(when 3' = O) and the inequality (5.8) is satisfied for n = 1, although not by a wide margin. 
When 3' = oo 

(Pu  - -Po t )  2 
Poo - 7.3623 (5.15) 

4Po2 

Again the inequality (5.8) is satisfied. 

6. Downstream diffusion from a maintained source 

If  the cross-sectional distribution of  0 is maintained at some section, ~ = 0 say, then a steady 

temperature distribution will be established downstream, i.e. for ~ > 0. This steady distribution 

has the form 

0 ~ ~ A.F.o(~7,~)O,,(~) as ~ ~ 0% (6.1) 
n=O 

where, from (5.2) and similar equations for On, 

d20" PPnx don _p2p.= d~ ----T- _ d---~ --p.oOn = O, (n = O, 1, 2 . . . .  ) (6.2) 

These equations have solutions of  the form 

0 , ( ~ )  = e -a"~,  (6.3) 

where 

_ + P n l  > O. (6.4) 
2e  [V .~]  P-:J P-: 

Consider first the case of  an insulating boundary 3, = 0. In this case Poo = 0 and Pno > 0 
(n/> 1). Hence ao = 0 and a ,  > 0(n ~> 1). As is physically obvious, the temperature distri- 

bution in this case tends to the constant value AoFoo as ~-+ 0% and the length of  duct over 
which the temperature is significantly non-uniform is in general of  the order o f  

{ I/pHi2 plo] 1'~ p11/-1 
L1 = a ; lb  = 2eb [\PI:/  --4 P12J +~-12J " (6.5) 

When 7 -> 0 (for a two-dimensional case) 
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L1 2(zr 3 --3zr) 
Pb 3rta 3' 

(6.6) 

where (5.11) and the relevant expressions for P12 and Plo have been used. The quantity in 
curly brackets in (6.5) depends on the duct cross-section, but is invariably a number of  order 

units. 
If  the boundary is not insulating (i.e. 7 > o), then ao > 0, and 

0 ~ AoFoo(rL~)e -c% ~ as ,e ~ oo (6.7) 

The temperature field decays over a distance 

{[t l .oo] .0 t' Lo = O~o~b = 2eb [\Po2] - -4~o2 +Po2J (6.8) 

Here the quantity in curly brackets depends on the duct cross-section and on 3'. The asymptotic 

results for small and large 3' are as indicated in the following table for the case of  the two- 

dimensional channel (Section 3) and the pipe of  circular cross-section (Section 4). 

Table 1. Behaviour of Lo/Pb for small and large values of the wall conductance 3'. 

3' --~ o T ---~ ~ 

Two-dimensional channel ~ 2/3 3' 0.3537 

Pipe of circular cross-section ~ 1/2 3' 0.1365 

7. Discussion 

It has been shown that if the duct is a thermal conductor, then in addition to the net loss 

of  heat from the fluid to the boundary, the values of  the effective convection velocity Ue 
and the effective diffusivity De are altered; in fact Ue turns out to be an increasing function of  

the wall conductance, while De is a decreasing function of  the conductance. This information 
should have a direct effect on the interpretation of  data in several heat and mass transfer 

systems, notably in flow systems with heterogeneous catalysis. The results are consistent with 
earlier results of  Sankarasubramanian and Gill [10],  but the method adopted in the present 
paper is simpler and therefore more easily generalisable. 

The continuous loss of  heat from the fluid in the case o f  a conducting boundary means 
that the effect o f  a maintained source of  heat at a given section will penetrate only a finite 
distance downstream. This distance is calculated, as a function o f  wall conductance, in the final 

section of  this paper. This result is o f  practical importance in many branches of  engineering. 
The example of  cooling circuits in nuclear reactors, mentioned in the introduction, is one 

possible application. Another potential application is in screw extruders where knowledge 
of  the distance the heat penetrates is essential. This paper has shed some light on the order 
of  magnitude o f  this distance. 
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